CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimers disease

← Back to publications

Published: 2016-09-09

Formatted citation

Remnestål J, Just D, Mitsios N, Fredolini C, Mulder J, Schwenk JM, Uhlén M, Kultima K, Ingelsson M, Kilander L, Lannfelt L, Svenningsson P, Nellgård B, Zetterberg H, Blennow K, Nilsson P, Häggmark-Månberg A.. CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimers disease.
Proteomics Clin Appl. (2016). DOI: 10.1002/prca.201500150

Abstract

PURPOSE: This study is part of a larger effort aiming to expand the knowledge of brain-enriched proteins in human cerebrospinal fluid (CSF) and to provide novel insight into the relation between such proteins and different neurodegenerative diseases. EXPERIMENTAL DESIGN: Here 280 brain-enriched proteins in CSF from patients with Alzheimers disease (AD), Parkinsons disease (PD) and dementia with Lewy bodies (DLB) are profiled. In total, 441 human samples of ventricular CSF collected post mortem and lumbar CSF collected ante mortem are analyzed using 376 antibodies in a suspension bead array setup, utilizing a direct labelling approach. RESULTS: Among several proteins displaying differentiated profiles between sample groups, we focus here on two synaptic proteins, neuromodulin (GAP43) and neurogranin (NRGN). They are both found at elevated levels in CSF from AD patients in two independent cohorts, providing disease-associated profiles in addition to verifying and strengthening previously observed patterns. Increased levels are also observed for patients for whom the AD diagnosis was not established at the time of sampling. CONCLUSIONS AND CLINICAL RELEVANCE: These findings indicate that analyzing the brain-enriched proteins in CSF is of particular interest to increase the understanding of the CSF proteome and its relation to neurodegenerative disorders. In addition, this study lends support to the notion that measurements of these synaptic proteins could potentially be of great relevance in future diagnostic tests for AD.